
1

Sarvajanik College of Engineering & Technology

Department of Information Technology

SUBJECT FILE

Subject Coordinator: Prof. Tushar Gohil

Name of Subject: Advanced Web Technology

Subject Code: BTIT14603

Year: BE-III

Semester: VI

Academic Year: 2024-25

Term Date: 16/12/2024 to 24/04/2025

Address

Dr. R. K. Desai Marg, Athwalines, Surat

www.scet.ac.in

2

Index

Teaching Scheme 3

Syllabus 4

• Course Outcomes 5

Lecture Plan 6

Lab Plan 9

Reference Books 12

Lab Manual 13

1. Guess the Number Game in JavaScript 13

Expected Outcomes: 14

2. Hello World Web Page using React JS 15

Additional Notes: 15

3. Creating a Sign-Up Form in React JS 17

Expected Outcomes: 20

4. Creating a Notes Application Using React.js 21

Expected Outcomes: 23

5. Creating a To-Do List Application Using React Context 24

6. Creating a "Hello World" Node.js Application 24

Expected Outcomes: 24

Troubleshooting: 24

Additional Notes: 24

7. Creating an HTTP Server in Node.js 25

Expected Outcomes: 26

8. Creating an HTTP Server in Node.js to Respond with Current Date and Time 27

9. Demonstrating Cookies and Sessions in Node.js 27

Expected Outcomes: 28

10. Creating a Signup Web Application using React JS, Node.js, and Express 29

11. Creating a Single Page Application (SPA) using MERN Stack 31

Expected Outcomes: 32

Mid-semester Question Paper 33

Continuous Assessment Record 34

Result Analysis 35

Counselling Report 36

Attendance Record 37

Answer Books 38

Students Practical Files/Tutorials/Assignments/Other Records 39

3

Teaching Scheme

❖ Prerequisite:

Web Technologies

❖ Rationale:

o Today’s world is driven by Internet based applications.

o The rationale behind this course is to impart the knowledge of java script-based

framework for web programming among students of Information Technology.

o Students will learn advanced web programming concepts related to Java script, React

JS, Node JS, and MongoDB.

❖ Teaching and Examination Scheme:

Teaching Scheme Theory Marks Practical Marks Total

L T P C TEE CA1 CA2 TEP CA3

3 0 2 4 60 25 15 30 20 150

CA1: Continuous Assessment (assignments/projects/open book tests/closed book tests) CA2: Sincerity in

attending classes/class tests/ timely submissions of assignments/self-learning attitude/solving advanced problems

TEE: Term End Examination TEP: Term End Practical Exam (Performance and viva on practical skills learned

in course) CA3: Regular submission of Lab work/Quality of work submitted/Active participation in lab

sessions/viva on practical skills learned in course

4

Syllabus

Sr.

No.

Contents Total

Hrs.

%

Weight

age

1. Refreshing JavaScript and CSS

CSS syntax, benefits, Responsive design, Bootstrap introduction, Java

script syntax, Java script inbuilt objects, Error handling and event handling,

DOM, Asynchronous Programming

08 17

2. React JS

Pure React, Props, State and the Component Tree, React Router, React

Hooks, React Context, React Error Boundaries

12 28

3. Node JS

Introduction, File Access, Rest API, Events and Event Loop, timers, Error

Handling, Networking

10 22

4. Express JS

Basics, Routing, Middleware, Template Engine

05 11

5. Mongo DB

Introduction to MongoDB,Mapping Relational database to MongoDB,

MongoDB installation and configuration in Windows, MongoDB Create

database, MongoDB Drop Database, MongoDB Create collection,

MongoDB Drop collection ,MongoDB Insert Document, MongoDB Query

Document, MongoDB Update Document,Delete document in MongoDB

05 11

6. Single Page Applications

Introduction to single page applications, designing and developing single

page applications using MERN stack.

05 11

• Web link ((As per syllabus)

• Video Link (As per syllabus)

• Software (As per syllabus)

5

• Course Outcomes

Course

Outcome

Statement Weightage

(%)

CO1 Explain the concepts of client-side programming using CSS and Java

Script

10

CO2 Apply the concepts of React JS to extend basic HTML features 30

CO3 Utilize Node JS framework to build dynamic server-side applications 30

CO4 Build the Applications utilizing functionalities of Databases like

Mongo DB.

20

CO5 Design and implement full featured single page application using

MERN Stack.

10

6

Lecture Plan

Faculties: Prof. Tushar Gohil (3 Hrs.) (MON, TUE, WED)

No. Topics Plan Date Actual Date
Mode

(B/M) *

Chapter 1: Refreshing Javascript and CSS (8 Hrs)

1. CSS syntax, benefits 16/12/24 23/12/24
B + M

2. Responsive design, Bootstrap introduction 17/12/24 24/12/24
B + M

3. Java script syntax 18/12/24 30/12/24
B + M

4. Java script inbuilt objects 23/12/24 31/12/24
B + M

5. Error handling and event handling 24/12/24 01/01/25
B + M

6. DOM 30/12/24 06/01/25
B + M

7. Asynchronous Programming 31/12/24 07/01/25
B + M

8. Asynchronous Programming 01/01/25 08/01/25
B + M

Chapter 2: React JS (12 hrs)

9. Pure React, 06/01/25 13/01/25 B + M

10. Props 07/01/25 15/01/25 B + M

11. Props 08/01/25 15/01/25 B + M

12. State and the Component Tree 13/01/25 20/01/25 B + M

13. State and the Component Tree 15/01/25 21/01/25 B + M

14. React Router 20/01/25 22/01/25 B + M

15. React Hooks 21/01/25 27/01/25 B + M

16. React Hooks 22/01/25 28/01/25 B + M

17. React Hooks 27/01/25 28/01/25
B + M

18. React Context 28/01/25 29/01/25 B + M

19. React Context 29/01/25 03/02/25 B + M

20. React Error Boundaries 03/02/25 04/02/25 B + M

7

Chapter 3: Node JS (10 hrs)

21. Introduction 04/02/25 05/02/25 B + M

22. File Access 05/02/25 10/02/25 B + M

23. Rest API 10/02/25 11/02/25 B + M

24. Rest API 11/02/25 12/02/25
B + M

25. Events and Event Loop 12/02/25 17/02/25
B + M

26. Events and Event Loop 17/02/25 18/02/25
B + M

27. Timers 18/02/25 19/02/25
B + M

28. Error Handling 19/02/25 19/02/25
B + M

29. Networking 10/03/25 10/03/25
B + M

30. Networking 11/03/25 11/03/25
B + M

Chapter 4: Express JS (5 Hrs)

31. Basics 12/03/25 12/03/25 B + M

32. Routing 17/03/25 17/03/25 B + M

33. Routing 18/03/25 17/03/25 B + M

34. Middleware 19/03/25 18/03/25 B + M

35. Template Engine 24/03/25 19/03/25 B + M

Chapter 5: MongoDB (5 Hrs)

36. Introduction to MongoDB, Mapping Relational

database to MongoDB

25/03/25 24/03/25 B + M

37. MongoDB installation and configuration in Windows 26/03/25 25/03/25 B + M

38. MongoDB Create database, MongoDB Drop Database,

MongoDB Create collection

01/04/25 26/03/25 B + M

39. MongoDB Drop collection ,MongoDB Insert Document,

MongoDB Query Document

02/04/25 01/04/25 B + M

40. MongoDB Update Document, Delete document in

MongoDB

07/04/25 02/04/25 B + M

Chapter 6: Single Page Applications (5 Hrs)

41. Introduction to single page applications 08/04/25 07/04/25 B + M

42. Designing and developing single page applications

using MERN stack.

09/04/25 08/04/25 B + M

43. Designing and developing single page applications

using MERN stack.

15/04/25 09/04/25 B + M

8

44. Designing and developing single page applications

using MERN stack.

16/04/25 15/04/25 B + M

45. Designing and developing single page applications

using MERN stack.

16/04/25 15/04/25 B + M

* B - Black Board, M - Multi-media

9

Lab Plan

Faculty: Prof. Tushar Gohil (4 Hrs) Batch: A, B

 Prof. Ashish Kharvar (2 Hrs.) B

 Dr. Krishna Delvadia (2 Hrs.) A

Practical List

Sr No Problem Statement Batch – A Batch-B

Planned

Date

Actual

Date

Planned

Date

Actual

Date

01

Create a simple guess for the number type game. It

should choose a random number between 1 and 100,

then challenge the player to guess the number in 10

turns. After each turn the player should be told if they

are right or wrong, and if they are wrong, whether the

guess was too low or too high. It should also tell the

player what numbers they previously guessed. The

game will end once the player guesses correctly, or

once they run out of turns. When the game ends, the

player should be given an option to start playing

again.

19/12/2024 26/12/2025 16/12/2025 30/12/2025

02 Create a Hello World Web Page using React JS. 26/12/2024 02/01/2025 23/12/2025 06/01/2025

03

Create a Sign-Up Form in React JS. The Sign-up form

should ask for Name, Mobile, Email, Address, Date of

Birth, Gender, Username, Password and Confirm

Password. The Form should have two buttons, one for
reset and one for submitting. The Submit Button should be

enabled only when all the input values are validated.

02/01/2025,

09/01/2025

09/01/2025 30/12/2025,

06/01/2025

13/01/2025

04
Develop a simple application using React.js where a user
can Add/Delete notes. Each note timestamped as well.

16/01/2025,

23/01/2025

16/01/2025 13/01/2025,

20/01/2025

20/01/2025

05 Create a to-do list application using react-context. 30/01/2025 23/01/2025 27/01/2025 27/01/2025

06 Create a Hello World Nodejs Application. 06/02/2025 30/01/2025 03/02/2025 03/02/2025

07
Create an Http Server which will respond with message
"Welcome to the World of Nodejs" to the client.

13/02/2025 06/02/2025 10/02/2025 10/02/2025

08
Create an Http Server which will respond with current date
and time to the client

20/02/2025 13/02/2025 17/02/2025 10/03/2025

09
Demonstrate the working of cookies and sessions in

nodejs.
13/03/2025 13/03/2025 10/03/2025 17/03/2025

10

Create a Signup Web Applications using React JS,nodejs
and express framework.

The Sign-up form should ask for Name, Mobile, Email,

Address, Date of Birth, Gender, Username, Password and
Confirm Password. The Form should have two buttons,

one for reset and one for submitting. The Submit Button

should be enabled only when all the input values are

20/03/2025,

27/03/2025

20/03/2025,

27/03/2025

17/03/2025,

24/03/2025

24/03/2025

10

validated. Upon Clicking the Submit Button Your webpage

should traversed to a route "/process_request" which is

defined using NodeJS and express framework and which
will display the contents back to the client and insert all the

data to the database made in mongo dB.

11
Create a Single Page Application using MERN Stack. 03/04/2025,

17/04/2025

03/04/2025,

17/04/2025

07/04/2025 07/04/2025

11

Rubrics

Category Level of Performance

 10-8 marks 7-4 marks 3-1 marks

Implementation

(10)

Able to implement in

time limit with correct

result

Able to implement in time

limit, no proper result

Able to implement with

error and no result

 5-4 marks 3-2 marks 1 marks

Viva (5)

Able to interpret

practical theoretically

as well as practically

Partially able to interpret

theoretically as well as

practically

Unable to interpret

theoretical as well

practical concepts

Documentation Level

 5-4 marks 3-2 marks 1 marks

File Submission

(5)
Completed on time Incomplete but on time Incomplete and delay

12

Reference Books

1. Node.js in Action, Alex Young, Bradley Meck, Mike Cantelon, Tim Oxley, Marc Harter, T.J.

Holowaychuk, Nathan Rajlich

2. Node.Js in Practice, Alex Young, Marc Harter, Ben Noordhuis

3. Professional Node.js, Pedro Teixeira

4. The Road to Learn React: Your Journey to Master Plain Yet Pragmatic React.Js, Robin

Wieruch

5. MongoDB Cookbook, Cyrus Dasadia , Amol Nayak

13

Lab Manual

1. Guess the Number Game in JavaScript

Objective:

• To create a web-based game where the player guesses a randomly chosen number between 1 and
100 within 10 turns.

Materials:

• Text editor or IDE
• Web browser

Procedure:

1. Create Project Structure:
o Create a new directory for the project.
o Inside this directory, create an index.html file and a script.js file.

2. HTML Setup (index.html):

html

Copy code

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Guess the Number Game</title>

 <style>

 body {

 font-family: Arial, sans-serif;

 text-align: center;

 margin-top: 50px;

 }

 </style>

</head>

<body>

 <h1>Guess the Number</h1>

 <p>Guess a number between 1 and 100:</p>

 <input type="number" id="guessInput" min="1" max="100">

 <button id="guessButton">Guess</button>

 <p id="message"></p>

 <p id="previousGuesses"></p>

 <button id="restartButton" style="display:none;">Restart</button>

 <script src="script.js"></script>

</body>

</html>

3. JavaScript Setup (script.js):

javascript

Copy code

let randomNumber = Math.floor(Math.random() * 100) + 1;

let guesses = [];

let maxTurns = 10;

14

document.getElementById('guessButton').addEventListener('click', () => {

 const guessInput = document.getElementById('guessInput');

 const guess = Number(guessInput.value);

 if (!guess || guess < 1 || guess > 100) {

 alert('Please enter a valid number between 1 and 100.');

 return;

 }

 guesses.push(guess);

 let message = '';

 if (guess < randomNumber) {

 message = 'Too low!';

 } else if (guess > randomNumber) {

 message = 'Too high!';

 } else {

 message = 'Congratulations! You guessed it right!';

 endGame();

 return;

 }

 if (guesses.length >= maxTurns) {

 message = `Game over! The correct number was ${randomNumber}.`;

 endGame();

 return;

 }

 document.getElementById('message').textContent = message;

 document.getElementById('previousGuesses').textContent = `Previous

guesses: ${guesses.join(', ')}`;

 guessInput.value = '';

 guessInput.focus();

});

document.getElementById('restartButton').addEventListener('click', () => {

 randomNumber = Math.floor(Math.random() * 100) + 1;

 guesses = [];

 document.getElementById('message').textContent = '';

 document.getElementById('previousGuesses').textContent = '';

 document.getElementById('restartButton').style.display = 'none';

 document.getElementById('guessInput').disabled = false;

 document.getElementById('guessButton').disabled = false;

});

function endGame() {

 document.getElementById('guessInput').disabled = true;

 document.getElementById('guessButton').disabled = true;

 document.getElementById('restartButton').style.display = 'block';

}

Expected Outcomes:

• The player will be able to guess the number within 10 turns.
• The player will receive feedback after each guess indicating whether the guess was too low, too

high, or correct.
• The player will see their previous guesses.
• The game will end when the player guesses correctly or runs out of turns, with an option to restart

the game.

15

2. Hello World Web Page using React JS

Objective:

• To create a simple web page that displays "Hello World" using React JS.

Materials:

• Node.js installed
• Text editor or IDE
• Web browser

Procedure:

1. Setup Project Structure:
o Open your terminal and create a new directory for the project. Navigate into this directory.
o Use Create React App to set up a new React project:

npx create-react-app hello-world-react

cd hello-world-react

2. Modify the App Component:
o Open the project in your text editor or IDE.
o Navigate to src/App.js and replace its content with the following code:

import React from 'react';

function App() {

 return (

 <div>

 <h1>Hello World</h1>

 </div>

);

}

export default App;

3. Run the React Application:
o In your terminal, start the development server:

npm start

o This will open a new browser window/tab with the default URL
http://localhost:3000, and you should see the "Hello World" message displayed.

Expected Outcomes:

• The web page will display "Hello World" in the browser.

Additional Notes:

• The development server provided by Create React App supports hot reloading, so any changes

you make to the code will be reflected immediately in the browser without needing to refresh

the page.

16

• The structure of a Create React App project includes several files and folders, but for this basic

"Hello World" example, the main file you are concerned with is src/App.js.

17

3. Creating a Sign-Up Form in React JS

Objective:

• To create a sign-up form in React JS that includes fields for Name, Mobile, Email, Address, Date of
Birth, Gender, Username, Password, and Confirm Password. The form will have reset and submit
buttons, with the submit button enabled only when all inputs are validated.

Materials:

• Node.js installed
• Text editor or IDE
• Web browser

Procedure:

1. Setup Project Structure:
o Open your terminal and create a new React project using Create React App:

npx create-react-app signup-form

cd signup-form

2. Create the Sign-Up Form Component:
o In your src directory, create a new file SignupForm.js and add the following code:

import React, { useState } from 'react';

const SignupForm = () => {

 const [formData, setFormData] = useState({

 name: '',

 mobile: '',

 email: '',

 address: '',

 dateOfBirth: '',

 gender: '',

 username: '',

 password: '',

 confirmPassword: '',

 });

 const [errors, setErrors] = useState({});

 const validate = () => {

 const newErrors = {};

 if (!formData.name) newErrors.name = 'Name is required';

 if (!formData.mobile) newErrors.mobile = 'Mobile number is

required';

 if (!formData.email) newErrors.email = 'Email is required';

 else if (!/\S+@\S+\.\S+/.test(formData.email)) newErrors.email =

'Email is invalid';

 if (!formData.address) newErrors.address = 'Address is required';

 if (!formData.dateOfBirth) newErrors.dateOfBirth = 'Date of Birth

is required';

 if (!formData.gender) newErrors.gender = 'Gender is required';

 if (!formData.username) newErrors.username = 'Username is

required';

 if (!formData.password) newErrors.password = 'Password is

required';

18

 if (formData.password !== formData.confirmPassword)

newErrors.confirmPassword = 'Passwords do not match';

 setErrors(newErrors);

 return Object.keys(newErrors).length === 0;

 };

 const handleChange = (e) => {

 const { name, value } = e.target;

 setFormData({

 ...formData,

 [name]: value,

 });

 };

 const handleSubmit = (e) => {

 e.preventDefault();

 if (validate()) {

 console.log('Form data:', formData);

 alert('Form submitted successfully!');

 setFormData({

 name: '',

 mobile: '',

 email: '',

 address: '',

 dateOfBirth: '',

 gender: '',

 username: '',

 password: '',

 confirmPassword: '',

 });

 }

 };

 const handleReset = () => {

 setFormData({

 name: '',

 mobile: '',

 email: '',

 address: '',

 dateOfBirth: '',

 gender: '',

 username: '',

 password: '',

 confirmPassword: '',

 });

 setErrors({});

 };

 return (

 <form onSubmit={handleSubmit}>

 <div>

 <label htmlFor="name">Name</label>

 <input type="text" name="name" value={formData.name}

onChange={handleChange} />

 {errors.name && <div>{errors.name}</div>}

 </div>

 <div>

 <label htmlFor="mobile">Mobile</label>

 <input type="text" name="mobile" value={formData.mobile}

onChange={handleChange} />

 {errors.mobile && <div>{errors.mobile}</div>}

 </div>

19

 <div>

 <label htmlFor="email">Email</label>

 <input type="text" name="email" value={formData.email}

onChange={handleChange} />

 {errors.email && <div>{errors.email}</div>}

 </div>

 <div>

 <label htmlFor="address">Address</label>

 <input type="text" name="address" value={formData.address}

onChange={handleChange} />

 {errors.address && <div>{errors.address}</div>}

 </div>

 <div>

 <label htmlFor="dateOfBirth">Date of Birth</label>

 <input type="date" name="dateOfBirth"

value={formData.dateOfBirth} onChange={handleChange} />

 {errors.dateOfBirth && <div>{errors.dateOfBirth}</div>}

 </div>

 <div>

 <label htmlFor="gender">Gender</label>

 <select name="gender" value={formData.gender}

onChange={handleChange}>

 <option value="">Select</option>

 <option value="male">Male</option>

 <option value="female">Female</option>

 <option value="other">Other</option>

 </select>

 {errors.gender && <div>{errors.gender}</div>}

 </div>

 <div>

 <label htmlFor="username">Username</label>

 <input type="text" name="username" value={formData.username}

onChange={handleChange} />

 {errors.username && <div>{errors.username}</div>}

 </div>

 <div>

 <label htmlFor="password">Password</label>

 <input type="password" name="password"

value={formData.password} onChange={handleChange} />

 {errors.password && <div>{errors.password}</div>}

 </div>

 <div>

 <label htmlFor="confirmPassword">Confirm Password</label>

 <input type="password" name="confirmPassword"

value={formData.confirmPassword} onChange={handleChange} />

 {errors.confirmPassword && <div>{errors.confirmPassword}</div>}

 </div>

 <div>

 <button type="submit" disabled={!validate()}>Submit</button>

 <button type="button" onClick={handleReset}>Reset</button>

 </div>

 </form>

);

};

export default SignupForm;

20

3. Integrate the Sign-Up Form into Your App:
o Open src/App.js and modify it to include the SignupForm component:

import React from 'react';

import SignupForm from './SignupForm';

function App() {

 return (

 <div>

 <h1>Sign Up</h1>

 <SignupForm />

 </div>

);

}

export default App;

4. Run the React Application:
o In your terminal, start the development server:

npm start

o This will open a new browser window/tab with the default URL
http://localhost:3000, and you should see the sign-up form displayed.

Expected Outcomes:

• The sign-up form will display input fields for Name, Mobile, Email, Address, Date of Birth, Gender,
Username, Password, and Confirm Password.

• The form will validate each input field and display error messages for invalid inputs.
• The submit button will be enabled only when all inputs are validated.
• The reset button will clear all input fields and error messages.

21

4. Creating a Notes Application Using React.js

Objective:

• To develop a simple React.js application where users can add and delete notes. Each note should
be timestamped.

Materials:

• Node.js installed
• Text editor or IDE
• Web browser

Procedure:

1. Setup Project Structure:
o Open your terminal and create a new React project using Create React App:

npx create-react-app notes-app

cd notes-app

2. Create the Notes Component:
o In your src directory, create a new file Notes.js and add the following code:

import React, { useState } from 'react';

const Notes = () => {

 const [notes, setNotes] = useState([]);

 const [noteText, setNoteText] = useState('');

 const handleAddNote = () => {

 if (noteText.trim()) {

 const newNote = {

 id: Date.now(),

 text: noteText,

 timestamp: new Date().toLocaleString()

 };

 setNotes([...notes, newNote]);

 setNoteText('');

 }

 };

 const handleDeleteNote = (id) => {

 setNotes(notes.filter(note => note.id !== id));

 };

 return (

 <div>

 <h1>Notes</h1>

 <div>

 <input

 type="text"

 value={noteText}

 onChange={(e) => setNoteText(e.target.value)}

 placeholder="Write a note..."

 />

 <button onClick={handleAddNote}>Add Note</button>

 </div>

22

 {notes.map(note => (

 <li key={note.id}>

 <div>

 {note.text}

 <small>{note.timestamp}</small>

 </div>

 <button onClick={() =>

handleDeleteNote(note.id)}>Delete</button>

))}

 </div>

);

};

export default Notes;

3. Integrate the Notes Component into Your App:
o Open src/App.js and modify it to include the Notes component:

import React from 'react';

import Notes from './Notes';

function App() {

 return (

 <div>

 <Notes />

 </div>

);

}

export default App;

4. Add Some Basic Styling:
o Open src/App.css and add some basic styling for the notes application:

body {

 font-family: Arial, sans-serif;

 background-color: #f7f7f7;

 display: flex;

 justify-content: center;

 align-items: center;

 height: 100vh;

 margin: 0;

}

div {

 background-color: #fff;

 padding: 20px;

 border-radius: 10px;

 box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

}

input {

 width: calc(100% - 90px);

 padding: 10px;

 margin-right: 10px;

 border: 1px solid #ccc;

 border-radius: 5px;

}

button {

 padding: 10px 20px;

23

 border: none;

 background-color: #28a745;

 color: #fff;

 border-radius: 5px;

 cursor: pointer;

}

button:hover {

 background-color: #218838;

}

ul {

 list-style-type: none;

 padding: 0;

}

li {

 display: flex;

 justify-content: space-between;

 align-items: center;

 padding: 10px;

 border-bottom: 1px solid #ccc;

}

small {

 color: #999;

}

li button {

 background-color: #dc3545;

}

li button:hover {

 background-color: #c82333;

}

5. Run the React Application:
o In your terminal, start the development server:

npm start

o This will open a new browser window/tab with the default URL
http://localhost:3000, and you should see the notes application.

Expected Outcomes:

• The application will allow users to add notes with a timestamp.
• Users can delete notes by clicking the "Delete" button next to each note.
• The notes list will be displayed in a clean and user-friendly interface.

24

5. Creating a To-Do List Application Using React Context

Follow same procedure as mentioned in previous program.

6. Creating a "Hello World" Node.js Application

Objective:

• To create a basic Node.js application that responds with "Hello World".

Materials:

• Node.js installed

• Text editor or IDE

• Terminal or command prompt

1. Setup Project Structure:
o Create a new directory for your project and navigate into it:

mkdir hello-world-nodejs

cd hello-world-nodejs

2. Create the JavaScript File:
o Create a new file named index.js and add the following code:

console.log('Hello World');

3. Run the Script:
o In your terminal, run the Node.js script using the node command:

node index.js

o You should see the output Hello World printed in your terminal.

Expected Outcomes:

• Running the index.js file using Node.js will print Hello World to the console.

Troubleshooting:

• If you encounter any errors, ensure that Node.js is properly installed on your system.
• Verify that you are in the correct directory (hello-world-nodejs) when running node

index.js.

Additional Notes:

• This example demonstrates a basic use of Node.js to run a simple script without setting up an
HTTP server or handling HTTP requests.

25

7. Creating an HTTP Server in Node.js

Objective:

• To create a basic HTTP server in Node.js that responds with the message "Welcome to the World
of Node.js" to clients requesting a specific route.

Materials:

• Node.js installed
• Text editor or IDE
• Terminal or command prompt

Procedure:

1. Setup Project Structure:
o Create a new directory for your project and navigate into it:

mkdir http-server-nodejs

cd http-server-nodejs

2. Initialize a New Node.js Project:
o Run the following command to initialize a new Node.js project and create a package.json

file:

npm init -y

3. Create the Server File:
o Create a new file named server.js in the http-server-nodejs directory and add the

following code:

const http = require('http');

const hostname = '127.0.0.1';

const port = 3000;

const server = http.createServer((req, res) => {

 // Set HTTP status and headers

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 // Send the response body

 res.end('Welcome to the World of Node.js\n');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

4. Run the Server:
o In your terminal, start the Node.js server by executing the following command in the

http-server-nodejs directory:

node server.js

26

o You should see a message in your terminal indicating that the server is running:

Server running at http://127.0.0.1:3000/

5. Access the Server:
o Open your web browser or use a tool like curl and navigate to

http://127.0.0.1:3000/.
o You should see the response "Welcome to the World of Node.js" displayed in your browser

or terminal.

Expected Outcomes:

• The Node.js application should start an HTTP server that listens on port 3000.
• When accessing http://127.0.0.1:3000/ in a web browser or using curl, the message

"Welcome to the World of Node.js" should be displayed.

27

8. Creating an HTTP Server in Node.js to Respond with Current Date and Time

Follow same procedure as mentioned in previous program.

9. Demonstrating Cookies and Sessions in Node.js

Objective:

• To demonstrate the usage of cookies and sessions in a Node.js application using the express
framework.

Materials:

• Node.js installed
• Text editor or IDE
• Terminal or command prompt

Procedure:

1. Setup Project Structure:
o Create a new directory for your project and navigate into it:

mkdir cookies-sessions-demo

cd cookies-sessions-demo

2. Initialize a New Node.js Project:
o Run the following command to initialize a new Node.js project and create a package.json

file:

npm init -y

3. Install Required Packages:
o Install express and express-session packages:

npm install express express-session

4. Create the Server File:
o Create a new file named app.js in the cookies-sessions-demo directory and add the

following code:

const express = require('express');

const session = require('express-session');

const app = express();

const port = 3000;

// Middleware for session management

app.use(session({

 secret: 'your-secret-key',

 resave: false,

 saveUninitialized: true,

 cookie: { secure: false } // Change to true in production with HTTPS

}));

// Route for setting a session variable

28

app.get('/setSession', (req, res) => {

 req.session.username = 'JohnDoe';

 res.send('Session variable set');

});

// Route for getting the session variable

app.get('/getSession', (req, res) => {

 const username = req.session.username || 'No session variable set';

 res.send(`Session username: ${username}`);

});

// Route for clearing the session variable

app.get('/clearSession', (req, res) => {

 req.session.destroy((err) => {

 if (err) {

 console.error('Error destroying session:', err);

 res.send('Error clearing session');

 } else {

 res.send('Session cleared');

 }

 });

});

app.listen(port, () => {

 console.log(`Server running at http://localhost:${port}`);

});

5. Run the Server:
o In your terminal, start the Node.js server by executing the following command in the

cookies-sessions-demo directory:

node app.js

o You should see a message in your terminal indicating that the server is running:

Server running at http://localhost:3000

6. Test the Routes:
o Open your web browser or use a tool like curl to test the following routes:

▪ Set Session Variable:
▪ Navigate to http://localhost:3000/setSession. This will set a session

variable username with the value 'JohnDoe'.
▪ Get Session Variable:

▪ Navigate to http://localhost:3000/getSession. This will retrieve and
display the session variable username.

▪ Clear Session:
▪ Navigate to http://localhost:3000/clearSession. This will clear the

session and destroy the session variable username.

Expected Outcomes:

• When navigating to http://localhost:3000/setSession, you should see the message "Session
variable set".

• When navigating to http://localhost:3000/getSession, you should see the message "Session
username: JohnDoe" after setting the session.

• When navigating to http://localhost:3000/clearSession, you should see the message
"Session cleared".

29

10. Creating a Signup Web Application using React JS, Node.js, and Express

Objective:

• To develop a Signup Web Application that collects user information and submits it to a Node.js

backend for processing and storage in a MongoDB database.

Materials:

• Node.js installed

• MongoDB installed and running

• Text editor or IDE

• Terminal or command prompt

Procedure:

1. Setup Project Structure:

o Create a new directory for your project and navigate into it:

mkdir signup-web-app

cd signup-web-app

2. Initialize Frontend (React JS):

o Create the frontend using Create React App or your preferred React setup:

npx create-react-app client

o Navigate into the client directory:

cd client

3. Create Signup Form Component:

o Within the React application (client/src), create a signup form component

(SignupForm.js) that includes fields for Name, Mobile, Email, Address, Date of Birth,

Gender, Username, Password, and Confirm Password.

o Implement validation for the form fields (e.g., required fields, email format, password

matching).

o Include buttons for reset and submit. Ensure the submit button is enabled only when all

fields are validated.

4. Setup Backend (Node.js with Express):

o Navigate back to the root directory (signup-web-app):

cd ..

o Initialize the backend:

npm init -y

o Install necessary dependencies:

npm install express mongoose body-parser

o Create a server.js file for the Express server and define routes:

30

▪ Implement routes for handling signup form submission (POST

/process_request) which will validate inputs, store data in MongoDB, and

send back a response to the client.

5. Connect to MongoDB:

o Use Mongoose to connect your Node.js application to MongoDB. Ensure you have

MongoDB installed and running locally or use a cloud-hosted MongoDB service.

o Define a Mongoose schema for storing user information (Name, Mobile, Email, etc.).

6. Implement Form Submission Handling:

o In the backend (server.js), handle form submissions from the React frontend.

o Validate incoming data, hash passwords securely, and store validated user information

in MongoDB.

o Send a response back to the React frontend indicating success or failure of the signup

process.

7. Integrate Frontend with Backend:

o Update the React frontend (client/src/SignupForm.js) to send form data to the

Node.js backend (POST /process_request) when the submit button is clicked.

o Handle responses from the backend and provide feedback to the user.

31

11. Creating a Single Page Application (SPA) using MERN Stack

Objective:

• To develop a Single Page Application (SPA) using MongoDB, Express.js, React.js, and Node.js.

Materials:

• Node.js installed
• MongoDB installed and running
• Text editor or IDE
• Terminal or command prompt

Procedure:

1. Setup Project Structure:
o Create a new directory for your project:

mkdir mern-spa

cd mern-spa

2. Initialize Backend (Node.js with Express):
o Initialize a new Node.js project and navigate into it:

npm init -y

o Install necessary dependencies (e.g., express, mongoose, body-parser):

npm install express mongoose body-parser

o Create a server.js file for the Express server and define routes to serve the SPA and
handle API requests.

3. Connect to MongoDB:
o Use Mongoose to connect your Node.js application to MongoDB. Ensure you have

MongoDB installed and running locally or use a cloud-hosted MongoDB service.
o Define Mongoose schemas and models for storing data related to your application (e.g.,

users, posts).
4. Initialize Frontend (React.js):

o Initialize a new React.js application within the project directory (e.g., client folder):

npx create-react-app client

o Navigate into the client directory:

cd client

5. Develop the SPA with React.js:
o Build out React components that will form the pages and components of your SPA.
o Utilize React Router for navigation within the SPA, defining routes and handling page

transitions.
o Implement state management using React Context API or Redux to manage global

application state.
6. Integrate Frontend with Backend:

o Implement API calls from React components to the Node.js backend using fetch, Axios, or

32

other HTTP client libraries.
o Define API endpoints on the backend (server.js) to handle CRUD operations (Create,

Read, Update, Delete) for your application data.
7. Implement Authentication (Optional):

o If your application requires user authentication, implement signup, login, and logout
functionality.

o Use JWT (JSON Web Tokens) for authentication and authorization purposes.
8. Testing and Deployment:

o Test the SPA locally by running both the React frontend and Node.js backend
simultaneously.

o Deploy the SPA to a cloud platform (e.g., Heroku, AWS) for public access and scalability.
o Implement logging and error handling to monitor and troubleshoot issues in production.

Expected Outcomes:

• You should have a fully functional Single Page Application (SPA) that integrates MongoDB for data
storage, Express.js for API handling, React.js for frontend views, and Node.js for backend logic.

• The SPA should provide a seamless user experience with dynamic content updates and navigation
within a single web page.

33

 Mid-semester Question Paper

B.Tech IT–III (6th Semester) Div I & Div II - CA (MIDTERM) EXAMINATION

Subject: ADVANCED WEB TECHNOLOGY

Time: 11:00 am to 12:15 pm Subject Code: BTIT14603

Total Marks: 25 Date: 04/03/2025

Instruction: (1) Question 1 is compulsory.

 (2) Draw the figure and label it wherever it is necessary.

Q. No Question Marks

Q:1 Discuss the different types of React Hooks and their use cases. (5)

Q:2 Attempt any four. (12)

 1. Discuss the key components of CSS syntax with examples.

 2. What is a Promise in JavaScript, and what are its three states?

Explain each state.

 3. Discuss the difference between props and state in React components.

 4. Explain the concept of Event Emitters in Node.js with an example.

 5. Demonstrate how React Context can be used as an alternative to

prop drilling for state management in deeply nested components.

Q:3 Attempt any two. (8)

 1. Create a React component that uses state to display a counter, which

increments by 5 when the "Increment" button is clicked and

decrements by 3 when the "Decrement" button is clicked.

 2. Implement a Node.js script to read the contents of a text file and

display them in the console.

 3. Create a basic REST API using Node.js that responds with "Hello,

SCET!" when accessed via an HTTP GET request.

34

Continuous Assessment Record

Printed Mark sheet (in the given format)

35

Result Analysis

Number of Students Mid-I (04/03/25)

 Total 76

Not allowed 00

Absent 00

Fail 00

Pass 76

Pass (%) 100 %

AA 41

AB 14

BB 12

BC 06

CC 02

CD 01

FF 00

Note: AA (>=85%), AB (>=75% < 85%),BB (>=65% < 75%), BC (>=55% < 65%), CC

(>=45% < 55), CD (>=40% < 45%), FF (<45%)

36

Counselling Report

Date Enrollment No. Name Of Students Details

37

Attendance Record

Musters

38

Answer Books

39

Students Practical Files/Tutorials/Assignments/Other Records

Note:

1) Max 5 best records for student Files/Tutorial/Assignments

2) Other records – Term end practical exam supplementary / Quiz Hard copy or any other

records (all the records need to be submitted)

