Sarvajanik College of Engineering & Technology

Department of Information Technology

SUBJECT FILE

Subject Coordinator: Prof. Tushar Gohil
Name of Subject: Advanced Web Technology
Subject Code: BTIT14603

Year: BE-III

Semester: VI

Academic Year: 2023-24

Term Date: 26/12/2023 to 27/04/2024

Address
Dr. R. K. Desai Marg, Athwalines, Surat
www.scet.ac.in

Index

Teaching Scheme
Syllabus
e Course Outcomes
Lecture Plan
Lab Plan
Reference Books
Lab Manual
1. Guess the Number Game in JavaScript
Expected Outcomes:
2. Hello World Web Page using React JS
Additional Notes:
3. Creating a Sign-Up Form in React JS
Expected Outcomes:
4. Creating a Notes Application Using React.js
Expected Outcomes:
5. Creating a To-Do List Application Using React Context
6. Creating a "Hello World" Node.js Application
Expected Outcomes:
Troubleshooting:
Additional Notes:
7. Creating an HTTP Server in Node.js
Expected Outcomes:
8. Creating an HTTP Server in Node.js to Respond with Current Date and Time
9. Demonstrating Cookies and Sessions in Node.js
Expected Outcomes:
10. Creating a Signup Web Application using React JS, Node.js, and Express
11. Creating a Single Page Application (SPA) using MERN Stack
Expected Outcomes:
Mid-semester Question Paper
Remedial Question Paper
Continuous Assessment Record
Result Analysis
Counselling Report
Attendance Record
Answer Books

Students Practical Files/Tutorials/Assignments/Other Records

< O Ot B~

10
13
14
14
15
16
16
18
21
22
24
25
25
25
25
25
26
27
28
28
29
30
32
33
34
35
36
37
38
39
40
41

Teaching Scheme

% Prerequisite:

Web Technologies

<+ Rationale:

o Today’s world is driven by Internet based applications.

o The rationale behind this course is to impart the knowledge of java script-based

framework for web programming among students of Information Technology.

o Students will learn advanced web programming concepts related to Java script, React

JS, Node JS, and MongoDB.

+ Teaching and Examination Scheme:

Teaching Scheme Theory Marks Practical Marks Total
L T P C TEE CAl CA2 TEP CA3
3 0 2 4 60 25 15 30 20 150

CA1l: Continuous Assessment (assignments/projects/open book tests/closed book tests) CA2: Sincerity in
attending classes/class tests/ timely submissions of assignments/self-learning attitude/solving advanced problems
TEE: Term End Examination TEP: Term End Practical Exam (Performance and viva on practical skills learned
in course) CA3: Regular submission of Lab work/Quality of work submitted/Active participation in lab
sessions/viva on practical skills learned in course

Syllabus

Sr. Contents Total %
No. Hrs. | Weight
age
1. Refreshing JavaScript and CSS 08 17
CSS syntax, benefits, Responsive design, Bootstrap introduction, Java
script syntax, Java script inbuilt objects, Error handling and event handling,
DOM, Asynchronous Programming
2. React JS 12 28
Pure React, Props, State and the Component Tree, React Router, React
Hooks, React Context, React Error Boundaries
3. Node JS 10 22
Introduction, File Access, Rest API, Events and Event Loop, timers, Error
Handling, Networking
4. Express JS 05 11
Basics, Routing, Middleware, Template Engine
3. Mongo DB 05 11
Introduction to MongoDB,Mapping Relational database to MongoDB,
MongoDB installation and configuration in Windows, MongoDB Create
database, MongoDB Drop Database, MongoDB Create collection,
MongoDB Drop collection ,MongoDB Insert Document, MongoDB Query
Document, MongoDB Update Document,Delete document in MongoDB
6. Single Page Applications 05 11

Introduction to single page applications, designing and developing single
page applications using MERN stack.

Web link ((As per syllabus)
Video Link (As per syllabus)
Software (As per syllabus)

e (Course Outcomes

Course Statement Weightage
Outcome (%)

CO1 Explain the concepts of client-side programming using CSS and Java 10
Script

CO2 Apply the concepts of React JS to extend basic HTML features 30

CO3 Utilize Node JS framework to build dynamic server-side applications 30

CO4 Build the Applications utilizing functionalities of Databases like 20
Mongo DB.

CO5 Design and implement full featured single page application using 10

MERN Stack.

Lecture Plan

Faculties:

Prof. Tushar Gohil (3 Hrs.) (TUE, WED, THU)

No. Topics Plan Date Actual Date (1];/;1(\)/;1)‘3*
Chapter 1: Refreshing Javascript and CSS (8 Hrs)
1. |CSS syntax, benefits 26/12/23 02/0104 | BTM
> |Responsive design, Bootstrap introduction 27/12/23 030124 | BtM
3. |Java script syntax 28/12/23 | o04/0124 | BTM
4. |Java script inbuilt objects 02/01/24 040124 | BtM
5. |Error handling and event handling 03/01/24 090124 | BTM
6. |DOM 04/01/24 | 09/0124 | BTM
7. |Asynchronous Programming 09/01/24 10/0124 | BTM
3. |Asynchronous Programming 10/01/24 110124 | BTM
Chapter 2: React JS (12 hrs)
9. |Pure React, 11/01/24 16/01/24 | B+M
10. |Props 16/01/24 17/0124 | B+M
11. |Props 17/01/24 18/01/24 | B+M
12. |State and the Component Tree 18/01/24 24/0124 | B+M
13. |State and the Component Tree 23/01/24 250124 | B+M
14. |React Router 24/01/24 300124 | B*M
15. |React Hooks 25/01/24 01/0224 | B*M
16. |React Hooks 01/02/24 06/02/24 | BTM
17. |React Hooks 06/0224 | 07/0224 | BTM
18. |React Context 07/02/24 07/0224 | B*M
19. |React Context 08/02/24 08/0224 | BtM
20. |React Error Boundaries 13/02/24 13/0224 | BTM

Chapter 3: Node JS (10 hrs)

21. |Introduction 14/02/24 14/0224 | BTM
22. |File Access 15/02/24 1500224 | BTM
23. |Rest API 20/02/24 20/02/24 | BTM
24. |Rest API 21/0224 | 21/0224 | BTM
25, |Events and Event Loop 220224 | 22/02024 | BTM
26. |Events and Event Loop 27/0224 | 27/0224 | BTM
27. |Timers 28/0224 | 280224 | BTM
28. |Error Handling 29/0224 | 29/0224 | BTM
29. |Networking 05/0324 | 0503024 | B*M
30. |Networking 06/03/24 06/0324 | BTM
Chapter 4: Express JS (5 Hrs)
31. |Basics 07/03/24 07/03/24 | B+M
32. |Routing 12/03/24 02/04/24 B+M
33. |Routing 13/03/24 04/04/24 B+M
34. |Middleware 14/03/24 09/04/24 | B+M
35. |Template Engine 27/03/24 10/04/24 | B+M
Chapter 5: MongoDB (5 Hrs)
36. |Introduction to MongoDB, Mapping Relational| 28/03/24 11/0424 | B+M
database to MongoDB
37. |MongoDB installation and configuration in Windows 02/04/24 11/0424 | B+M
38. |MongoDB Create database, MongoDB Drop Database,| 03/04/24 16/04/24 | B+M
MongoDB Create collection
39. |MongoDB Drop collection ,MongoDB Insert Document,| 04/04/24 16/0424 | B+M
MongoDB Query Document
40. |MongoDB Update Document, Delete document in| 09/04/24 16/0424 | B+M
MongoDB
Chapter 6: Single Page Applications (5 Hrs)
41. |Introduction to single page applications 10/04/24 17/04/24 | B+M
42. |Designing and developing single page applications| 11/04/24 17/04/24 | B+M
using MERN stack.
43. |Designing and developing single page applications| 16/04/24 18/04/24 | B+M
using MERN stack.

44. |Designing and developing single page applications
using MERN stack.

17/04/24

18/04/24

B+M

45. |Designing and developing single page applications
using MERN stack.

18/04/24

18/04/24

B+M

* B - Black Board, M - Multi-media

Lab Plan

Faculty: | Prof. Tushar Gohil (4 Hrs)

Batch:

Prof. Palak Desai (2 Hrs.)

Prof. Forum Patel (2 Hrs.)

Practical List

Sr No

Problem Statement

Bat

ch-A

Batch-B

Planned
Date

Actual
Date

Planned
Date

Actual
Date

01

Create a simple guess for the number type game. It should
choose a random number between 1 and 100, then
challenge the player to guess the number in 10 turns. After
each turn the player should be told if they are right or
wrong, and if they are wrong, whether the guess was too
low or too high. It should also tell the player what numbers
they previously guessed. The game will end once the
player guesses correctly, or once they run out of turns.
When the game ends, the player should be given an option
to start playing again.

01/01/24

01/01/24

01/01/24

01/01/24

02

Create a Hello World Web Page using React JS.

08/01/24

08/01/24

08/01/24

08/01/24

03

Create a Sign-Up Form in React JS. The Sign-up form should
ask for Name, Mobile, Email, Address, Date of Birth, Gender,
Username, Password and Confirm Password. The Form should
have two buttons, one for reset and one for submitting. The
Submit Button should be enabled only when all the input values
are validated.

22/01/24

22/01/24

22/01/24

22/01/24

04

Develop a simple application using React.js where a user can
Add/Delete notes. Each note timestamped as well.

29/01/24

29/01/24

29/01/24

29/01/24

05

Create a to-do list application using react-context.

05/02/24

05/02/24

05/02/24

05/02/24

06

Create a Hello World Nodejs Application.

12/02/24

12/02/24

12/02/24

12/02/24

07

Create an Http Server which will respond with message
"Welcome to the World of Nodejs" to the client.

26/02/24

26/02/24

26/02/24

26/02/24

08

Create an Http Server which will respond with current date and
time to the client

04/03/24

04/03/24

04/03/24

04/03/24

09

Demonstrate the working of cookies and sessions in nodejs.

11/03/24

11/03/24

11/03/24

11/03/24

10

Create a Signup Web Applications using React JS,nodejs and
express framework.

The Sign-up form should ask for Name, Mobile, Email,
Address, Date of Birth, Gender, Username, Password and
Confirm Password. The Form should have two buttons, one for
reset and one for submitting. The Submit Button should be
enabled only when all the input values are validated. Upon
Clicking the Submit Button Your webpage should traversed to a
route "/process request" which is defined using Node]S and

01/04/24

01/04/24

01/04/24

01/04/24

10

express framework and which will display the contents back to
the client and insert all the data to the database made in mongo
dB.

11

Create a Single Page Application using MERN Stack.

08/04/24

08/04/24

08/04/24

08/04/24

11

Rubrics

Category Level of Performance

10-8 marks 7-4 marks 3-1 marks

. Able to impl ti . o . .
Implementation) © .O 1 mp. ement i Able to implement in time | Able to implement with
time limit with correct .
(10) limit, no proper result error and no result
result
5-4 marks 3-2 marks 1 marks

Able to interpret Partially able to interpret Unable to interpret
Viva (5) practical theoretically theoretically as well as theoretical as well

as well as practically

practically

practical concepts

Documentation Level

5-4 marks

3-2 marks

1 marks

File Submission

)

Completed on time

Incomplete but on time

Incomplete and delay

12

Reference Books

1. Node.js in Action, Alex Young, Bradley Meck, Mike Cantelon, Tim Oxley, Marc Harter, T.J.
Holowaychuk, Nathan Rajlich

2. Node.ds in Practice, Alex Young, Marc Harter, Ben Noordhuis

3. Professional Node.js, Pedro Teixeira

4. The Road to Learn React: Your Journey to Master Plain Yet Pragmatic React.Js, Robin
Wieruch

5. MongoDB Cookbook, Cyrus Dasadia , Amol Nayak

13

Lab Manual

1. Guess the Number Game in JavaScript

Objective:

To create a web-based game where the player guesses a randomly chosen number between 1 and
100 within 10 turns.

Materials:

Text editor or IDE
Web browser

Procedure:

Create Project Structure:

o Create a new directory for the project.

o Inside this directory, create an index.html fileand a script.js file.
HTML Setup (index.html):

html
Copy code
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Guess the Number Game</title>
<style>
body {
font-family: Arial, sans-serif;
text-align: center;
margin-top: 50px;
}
</style>
</head>
<body>
<hl1>Guess the Number</hl>
<p>Guess a number between 1 and 100:</p>
<input type="number" id="guessInput" min="1" max="100">
<button id="guessButton">Guess</button>
<p id="message"></p>
<p id="previousGuesses"></p>
<button id="restartButton" style="display:none;">Restart</button>
<script src="script.js"></script>
</body>
</html>

JavaScript Setup (script.js):

javascript

Copy code

let randomNumber = Math.floor (Math.random() * 100) + 1;
let guesses = [];

let maxTurns = 10;

14

document.getElementById ('guessButton') .addEventListener ('click', () => {
const guessInput = document.getElementById('guessInput');
const guess = Number (guessInput.value);

if (!guess || guess < 1 || guess > 100) {
alert ('Please enter a valid number between 1 and 100.'");
return;

}

guesses.push (guess) ;

let message = '';
if (guess < randomNumber) {

message = 'Too low!';
} else if (guess > randomNumber) {
message = 'Too high!';
} else {
message = 'Congratulations! You guessed it right!';
endGame () ;
return;

}

if (guesses.length >= maxTurns) {
message = Game over! The correct number was ${randomNumber}. ;
endGame () ;
return;

}

document.getElementById ('message') .textContent = message;
document.getElementById ('previousGuesses') .textContent = "“Previous
guesses: ${guesses.join(', ")} ;
guessInput.value = '';
guessInput.focus () ;
})s
document.getElementById ('restartButton') .addEventListener ('click', () => {
randomNumber = Math.floor (Math.random() * 100) + 1;
guesses = [];
document.getElementById ('message') .textContent = '';
document.getElementById ('previousGuesses') .textContent = '';

(
(
document.getElementById ('restartButton').style.display = 'none';
document.getElementById ('guessInput') .disabled = false;
document.getElementById ('guessButton') .disabled = false;

1)

function endGame () {
document.getElementById ('guessInput') .disabled = true;
document.getElementById ('guessButton') .disabled = true;
document.getElementById ('restartButton') .style.display = 'block';
}

Expected Outcomes:

The player will be able to guess the number within 10 turns.

The player will receive feedback after each guess indicating whether the guess was too low, too
high, or correct.

The player will see their previous guesses.

The game will end when the player guesses correctly or runs out of turns, with an option to restart
the game.

15

2. Hello World Web Page using React]S

Objective:
e To create a simple web page that displays "Hello World" using React JS.
Materials:

¢ Node.js installed
e Text editor or IDE
e Web browser

Procedure:

1. Setup Project Structure:
o Open your terminal and create a new directory for the project. Navigate into this directory.
o Use Create React App to set up a new React project:

npx create-react-app hello-world-react
cd hello-world-react

2. Modify the App Component:
o Open the project in your text editor or IDE.
o Navigate to src/App. js and replace its content with the following code:

import React from 'react';
function App () {
return (
<div>
<hl>Hello World</hl>
</div>
) ;
}

export default App:;

3. Run the React Application:
o Inyour terminal, start the development server:

npm start

o This will open a new browser window/tab with the default URL
http://localhost:3000,and you should see the "Hello World" message displayed.

Expected Outcomes:
e The web page will display "Hello World" in the browser.

Additional Notes:

e The development server provided by Create React App supports hot reloading, so any changes
you make to the code will be reflected immediately in the browser without needing to refresh
the page.

16

The structure of a Create React App project includes several files and folders, but for this basic

"Hello World" example, the main file you are concerned with is src/App.Js.

17

3. Creating a Sign-Up Form in React JS

Objective:

e To create a sign-up form in React JS that includes fields for Name, Mobile, Email, Address, Date of
Birth, Gender, Username, Password, and Confirm Password. The form will have reset and submit
buttons, with the submit button enabled only when all inputs are validated.

Materials:

¢ Node.js installed
e Text editor or IDE
e Web browser

Procedure:

1. Setup Project Structure:
o Open your terminal and create a new React project using Create React App:

npx create-react-app signup-form
cd signup-form

2. Create the Sign-Up Form Component:
o Inyour src directory, create a new file SignupForm. js and add the following code:

import React, { useState } from 'react';

const SignupForm = () => {
const [formData, setFormData] = useState ({

name: '',
mobile: '',
email: '',
address: '',
dateOfBirth: '',
gender: '"',
username: '',
password: '',
confirmPassword: '',

1)
const [errors, setErrors] = useState({});

const validate = () => {
const newErrors = {};

if (!formData.name) newErrors.name = 'Name is required';

if (!formData.mobile) newErrors.mobile = 'Mobile number is
required’';

if (!formData.email) newErrors.email = 'Email is required’;

else if (!/\S+@\S+\.\S+/.test (formData.email)) newErrors.email =
'Email is invalid';

if (!formData.address) newErrors.address = 'Address is required';

if (!formData.dateOfBirth) newErrors.dateOfBirth = 'Date of Birth
is required';

if (!formData.gender) newErrors.gender = 'Gender is required';

if (!formData.username) newErrors.username = 'Username 1is
required';

if (!formData.password) newErrors.password = 'Password is

required';

if (formData.password !== formData.confirmPassword)
newErrors.confirmPassword = 'Passwords do not match';

setErrors (newErrors) ;
return Object.keys (newErrors) .length === 0;

}:

const handleChange = (e) => {
const { name, value } = e.target;
setFormData ({
...formbata,
[name] : value,
1) :
}i

const handleSubmit = (e) => {
e.preventDefault () ;
if (validate()) {
console.log('Form data:', formData);
alert ('Form submitted successfully!');
setFormData ({
name: ''
mobile: '',
email: '"',
address: '',
dateOfBirth: '',
gender: '',
username: '',
password: '',
confirmPassword: '',
)
}
}i

const handleReset = () => {
setFormData ({
name: ''
mobile: '',
email: '"',
address: '"',
dateOfBirth: '',
gender: '',
username: '',
password: '',
confirmPassword: '',
}):

setErrors ({});

}i

return (
<form onSubmit={handleSubmit}>

<div>
<label htmlFor="name">Name</label>
<input type="text" name="name" value={formData.name}

onChange={handleChange} />

{errors.name && <div>{errors.name}</div>}

</div>

<div>
<label htmlFor="mobile">Mobile</label>
<input type="text" name="mobile" value={formData.mobile}
onChange={handleChange} />
{errors.mobile && <div>{errors.mobile}</div>}
</div>

19

<div>
<label htmlFor="email">Email</label>
<input type="text" name="email" value={formData.email}
onChange={handleChange} />
{errors.email && <div>{errors.email}</div>}
</div>

<div>
<label htmlFor="address">Address</label>
<input type="text" name="address" value={formData.address}
onChange={handleChange} />
{errors.address && <div>{errors.address}</div>}
</div>

<div>
<label htmlFor="dateOfBirth">Date of Birth</label>
<input type="date" name="dateOfBirth"
value={formData.dateOfBirth} onChange={handleChange} />
{errors.dateOfBirth && <div>{errors.dateOfBirth}</div>}
</div>

<div>
<label htmlFor="gender">Gender</label>
<select name="gender" value={formData.gender}
onChange={handleChange}>
<option value="">Select</option>
<option value="male">Male</option>
<option value="female">Female</option>
<option value="other">Other</option>
</select>
{errors.gender && <div>{errors.gender}</div>}
</div>

<div>
<label htmlFor="username">Username</label>
<input type="text" name="username" value={formData.username}
onChange={handleChange} />
{errors.username && <div>{errors.username}</div>}
</div>

<div>
<label htmlFor="password">Password</label>
<input type="password" name="password"
value={formData.password} onChange={handleChange} />
{errors.password && <div>{errors.password}</div>}
</div>

<div>
<label htmlFor="confirmPassword">Confirm Password</label>
<input type="password" name="confirmPassword"
value={formData.confirmPassword} onChange={handleChange} />

{errors.confirmPassword && <div>{errors.confirmPassword}</div>}

</div>

<div>
<button type="submit" disabled={!validate () }>Submit</button>
<button type="button" onClick={handleReset}>Reset</button>
</div>
</form>
)
}i

export default SignupForm;

3. Integrate the Sign-Up Form into Your App:
o Open src/App.7js and modify it to include the SignupForm component:

import React from 'react';
import SignupForm from './SignupForm';

function App () {
return (
<div>
<h1>Sign Up</hl>
<SignupForm />
</div>
) ;
}

export default App;

4. Run the React Application:
o Inyour terminal, start the development server:

npm start

o This will open a new browser window/tab with the default URL
http://localhost:3000,and you should see the sign-up form displayed.

Expected Outcomes:

e The sign-up form will display input fields for Name, Mobile, Email, Address, Date of Birth, Gender,

Username, Password, and Confirm Password.
e The form will validate each input field and display error messages for invalid inputs.
e The submit button will be enabled only when all inputs are validated.
e The reset button will clear all input fields and error messages.

21

4. Creating a Notes Application Using React.js

Objective:

To develop a simple React.js application where users can add and delete notes. Each note should
be timestamped.

Materials:

¢ Node.js installed
e Text editor or IDE
e Web browser

Procedure:

1. Setup Project Structure:
o Open your terminal and create a new React project using Create React App:

npx create-react-app notes-app
cd notes-app

2. Create the Notes Component:

o Inyour src directory, create a new file Notes. js and add the following code:

import React, { useState } from 'react';

const Notes = () => {
const [notes, setNotes] = useState([]);
const [noteText, setNoteText] = useState('');

const handleAddNote = () => {
if (noteText.trim()) {
const newNote = {
id: Date.now(),
text: noteText,
timestamp: new Date () .toLocaleString()
}i
setNotes ([...notes, newNote]);
setNoteText (''");

}
}i

const handleDeleteNote = (id) => {
setNotes (notes.filter (note => note.id !== id));

}r

return (
<div>
<h1>Notes</h1>
<div>
<input
type="text"
value={noteText}
onChange={ (e) => setNoteText (e.target.value)}
placeholder="Write a note..."
/>
<button onClick={handleAddNote}>Add Note</button>
</div>

22

{notes.map (note => (
<1li key={note.id}>
<div>
{note.text}
<small>{note.timestamp}</small>

</div>
<button onClick={ () =>
handleDeleteNote (note.id) }>Delete</button>
</1li>
))}

</div>

) ;
}s;

export default Notes;

3. Integrate the Notes Component into Your App:
o Open src/App.7js and modify it to include the Notes component:

import React from 'react';
import Notes from './Notes';

function App () {
return (
<div>
<Notes />
</div>
) ;
}

export default App;

4. Add Some Basic Styling:
o Open src/App.css and add some basic styling for the notes application:

body {
font-family: Arial, sans-serif;
background-color: #f7f7f7;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
margin: O;

}

div {

background-color: #fff;

padding: 20px;

border-radius: 10px;

box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
}

input {
width: calc(100% - 90px);
padding: 10px;
margin-right: 10px;
border: 1lpx solid #ccc;
border-radius: 5px;

}

button {
padding: 10px 20px;

23

border: none;
background-color: #28a745;
color: #fff;
border-radius: 5px;
cursor: pointer;

}

button:hover {
background-color: #218838;

}

ul |
list-style-type: none;
padding: 0;

}

11 {

display: flex;

justify-content: space-between;
align-items: center;

padding: 10px;

border-bottom: 1px solid #ccc;

}

small {
color: #999;

}

1i button {
background-color: #dc3545;

}

1li button:hover {
background-color: #c82333;

}

5. Run the React Application:
o Inyour terminal, start the development server:

npm start

o This will open a new browser window/tab with the default URL
http://localhost:3000,and you should see the notes application.

Expected Outcomes:

e The application will allow users to add notes with a timestamp.
e Users can delete notes by clicking the "Delete" button next to each note.
e The notes list will be displayed in a clean and user-friendly interface.

24

5. Creating a To-Do List Application Using React Context

Follow same procedure as mentioned in previous program.

6. Creating a "Hello World" Node.js Application

Objective:
e To create a basic Node.js application that responds with "Hello World".
Materials:

e Node js installed
e Text editor or IDE
e Terminal or command prompt

1. Setup Project Structure:
o Create a new directory for your project and navigate into it:

mkdir hello-world-nodejs
cd hello-world-nodejs

2. Create the JavaScript File:
o Create anew file named index.js and add the following code:

console.log('Hello World'");

3. Run the Script:
o Inyour terminal, run the Node.js script using the node command:

node index.js
o Youshould see the output Hello World printed in your terminal.

Expected Outcomes:

e Running the index. js file using Node.js will print He110 World to the console.

Troubleshooting:

e Ifyou encounter any errors, ensure that Node.js is properly installed on your system.
o Verify that you are in the correct directory (hello-world-nodejs) when running node
index.Jjs.

Additional Notes:

e This example demonstrates a basic use of Node.js to run a simple script without setting up an
HTTP server or handling HTTP requests.

25

7. Creating an HTTP Server in Node.js

Objective:

e Tocreate a basic HTTP server in Node.js that responds with the message "Welcome to the World
of Node.js" to clients requesting a specific route.

Materials:

¢ Node.js installed
e Text editor or IDE
e Terminal or command prompt

Procedure:

1. Setup Project Structure:
o Create a new directory for your project and navigate into it:

mkdir http-server-nodejs
cd http-server-nodejs

2. Initialize a New Node.js Project:

o Run the following command to initialize a new Node.js project and create a package.json
file:

npm init -y

3. Create the Server File:
o Create anew file named server. s in the http-server-nodejs directory and add the
following code:

const http = require('http');

const hostname = '127.0.0.1"';
const port = 3000;

const server = http.createServer ((req, res) => {
// Set HTTP status and headers
res.statusCode = 200;
res.setHeader ('Content-Type', 'text/plain');

// Send the response body
res.end ('Welcome to the World of Node.js\n');
1)

server.listen (port, hostname, () => {
console.log(Server running at http://${hostname}:${port}/");
}):

4. Run the Server:
o Inyour terminal, start the Node.js server by executing the following command in the

http-server-nodejs directory:

node server.js

26

o You should see a message in your terminal indicating that the server is running:

Server running at http://127.0.0.1:3000/

5. Access the Server:
o Open your web browser or use a tool like curl and navigate to
http://127.0.0.1:3000/.
o You should see the response "Welcome to the World of Node.js" displayed in your browser
or terminal.

Expected Outcomes:

e The Node.js application should start an HTTP server that listens on port 3000.
e When accessing http://127.0.0.1:3000/ in a web browser or using curl, the message
"Welcome to the World of Node.js" should be displayed.

27

8. Creating an HTTP Server in Node.js to Respond with Current Date and Time

Follow same procedure as mentioned in previous program.

9. Demonstrating Cookies and Sessions in Node.js

Objective:

e To demonstrate the usage of cookies and sessions in a Node.js application using the express
framework.

Materials:

¢ Node.js installed
e Text editor or IDE
e Terminal or command prompt

Procedure:

1. Setup Project Structure:
o Create a new directory for your project and navigate into it:

mkdir cookies-sessions-demo
cd cookies-sessions-demo

2. Initialize a New Node.js Project:

o Run the following command to initialize a new Node.js project and create a package.json
file:

npm init -y

3. Install Required Packages:

o Install express and express-session packages:

npm install express express-session

4. Create the Server File:

o Create a new file named app.js in the cookies-sessions-demo directory and add the
following code:

const express = require('express');
const session = require ('express-session');

const app = express|();
const port = 3000;

// Middleware for session management
app.use (session ({

secret: 'your-secret-key',

resave: false,

saveUninitialized: true,

cookie: { secure: false } // Change to true in production with HTTPS
1))

// Route for setting a session variable

28

app.get ('/setSession', (req, res) => {
req.session.username = 'JohnDoe';
res.send ('Session variable set');

1)

// Route for getting the session variable

app.get ('/getSession', (req, res) => {
const username = reqg.session.username || 'No session variable set';
res.send(Session username: ${username}) ;

1)

// Route for clearing the session variable
app.get ('/clearSession', (req, res) => {
reqg.session.destroy((err) => {
if (err) {
console.error ('Error destroying session:', err);
res.send ('Error clearing session');
} else {
res.send('Session cleared');

app.listen (port, () => {
console.log(Server running at http://localhost:${port}’);
)

5. Run the Server:
o Inyour terminal, start the Node.js server by executing the following command in the
cookies-sessions-demo directory:

node app.js

o You should see a message in your terminal indicating that the server is running:

Server running at http://localhost:3000

6. Test the Routes:
o Open your web browser or use a tool like cur1 to test the following routes:
» Set Session Variable:
= Navigateto http://localhost:3000/setSession. This will set a session
variable username with the value ' JohnDoe'.
» Get Session Variable:
» Navigatetohttp://localhost:3000/getSession. This will retrieve and
display the session variable username.
» (Clear Session:
= Navigateto http://localhost:3000/clearSession. This will clear the
session and destroy the session variable username.

Expected Outcomes:

e When navigatingto http://localhost:3000/setSession, you should see the message "Session
variable set".

e When navigatingto http://localhost:3000/getSession, you should see the message "Session
username: JohnDoe" after setting the session.

¢ When navigatingto http://localhost:3000/clearSession, you should see the message
"Session cleared".

29

Objective:

10. Creating a Signup Web Application using React]S, Node.js, and Express

e To develop a Signup Web Application that collects user information and submits it to a Node.js
backend for processing and storage in a MongoDB database.

Materials:

Procedure:

Node.js installed

MongoDB installed and running
Text editor or IDE

Terminal or command prompt

1. Setup Project Structure:

o

Create a new directory for your project and navigate into it:

mkdir signup-web-app
cd signup-web-app

2. Initialize Frontend (React JS):

o

Create the frontend using Create React App or your preferred React setup:

npx create-react-app client

Navigate into the client directory:

cd client

3. Create Signup Form Component:

o

o

Within the React application (client/src), create a signup form component
(signupForm.js) that includes fields for Name, Mobile, Email, Address, Date of Birth,
Gender, Username, Password, and Confirm Password.

Implement validation for the form fields (e.g., required fields, email format, password
matching).

Include buttons for reset and submit. Ensure the submit button is enabled only when all
fields are validated.

4. Setup Backend (Node.js with Express):

o

Navigate back to the root directory (signup-web-app):

cd ..

Initialize the backend:

npm init -y

Install necessary dependencies:

npm install express mongoose body-parser

Create a server. s file for the Express server and define routes:

30

» Implement routes for handling signup form submission (POST
/process_request) which will validate inputs, store data in MongoDB, and
send back a response to the client.

5. Connect to MongoDB:
o Use Mongoose to connect your Node.js application to MongoDB. Ensure you have
MongoDB installed and running locally or use a cloud-hosted MongoDB service.
o Define a Mongoose schema for storing user information (Name, Mobile, Email, etc.).
6. Implement Form Submission Handling:
o Inthe backend (server.js), handle form submissions from the React frontend.
o Validate incoming data, hash passwords securely, and store validated user information
in MongoDB.
o Send a response back to the React frontend indicating success or failure of the signup
process.
7. Integrate Frontend with Backend:
o Update the React frontend (client/src/SignupForm.js) to send form data to the
Node.js backend (POST /process request) when the submit button is clicked.
o Handle responses from the backend and provide feedback to the user.

31

11. Creating a Single Page Application (SPA) using MERN Stack

Objective:

e Todevelop a Single Page Application (SPA) using MongoDB, Express.js, React.js, and Node.js.

Materials:
¢ Node.js installed
e MongoDB installed and running
e Text editor or IDE
e Terminal or command prompt

Procedure:

1. Setup Project Structure:
o Create a new directory for your project:

mkdir mern-spa
cd mern-spa

2. Initialize Backend (Node.js with Express):
o Initialize a new Node.js project and navigate into it:

npm init -y
o Install necessary dependencies (e.g., express, mongoose, body-parser):

npm install express mongoose body-parser

o Createa server. js file for the Express server and define routes to serve the SPA and
handle API requests.
3. Connect to MongoDB:
o Use Mongoose to connect your Node.js application to MongoDB. Ensure you have
MongoDB installed and running locally or use a cloud-hosted MongoDB service.
o Define Mongoose schemas and models for storing data related to your application (e.g.,
users, posts).
4. Initialize Frontend (React.js):
o Initialize a new React.js application within the project directory (e.g., c1ient folder):

npx create-react-app client

o Navigate into the client directory:

cd client

5. Develop the SPA with React.js:
o Build out React components that will form the pages and components of your SPA.
o Utilize React Router for navigation within the SPA, defining routes and handling page
transitions.
o Implement state management using React Context API or Redux to manage global
application state.
6. Integrate Frontend with Backend:
o Implement API calls from React components to the Node.js backend using fetch, Axios, or

32

other HTTP client libraries.
o Define API endpoints on the backend (server.7s) to handle CRUD operations (Create,
Read, Update, Delete) for your application data.
7. Implement Authentication (Optional):

o Ifyour application requires user authentication, implement signup, login, and logout
functionality.

o UseJWT (JSON Web Tokens) for authentication and authorization purposes.
8. Testing and Deployment:

o Test the SPA locally by running both the React frontend and Node.js backend
simultaneously.

o Deploy the SPA to a cloud platform (e.g., Heroku, AWS) for public access and scalability.
o Implementlogging and error handling to monitor and troubleshoot issues in production.

Expected Outcomes:

¢ You should have a fully functional Single Page Application (SPA) that integrates MongoDB for data
storage, Express.js for API handling, React.js for frontend views, and Node.js for backend logic.

e The SPA should provide a seamless user experience with dynamic content updates and navigation
within a single web page.

33

Mid-semester Question Paper

B.Tech -1II (6" Semester) CA-1 (MIDTERM) EXAMINATION March 2024
Subject: Advanced Web Technology

Time: 09:30 AMTO 10.45 AM Subject Code: BTIT13604
Total Marks: 25 Date: 21/03/2024

Q:1 | Describe the useState and useEffect hooks in React and their usage patterns with

examples.

Q:2 | Attempt Any Four.

1. Compare and contrast CSS and inline stylesheets, highlighting their advantages
and disadvantages.

Illustrate the working of async/await in JavaScript.

Explain the concept of virtual DOM in React and its advantages.

Explain the significance of events and the event loop in Node.js applications.

AN S

Demonstrate how React Context can be used as an alternative to prop drilling

for state management in deeply nested components.

Q:3 | Attempt Any Three.

1. Write a React component that fetches data from an API using the useEffect hook
and displays it in a list.

2. Create a React form component that captures user input for a username and
password, and updates state accordingly.

3. Implement a simple TCP server using Node.js that listens on port 3000 and logs
"Client connected" when a client connects.

4. Create a React component that uses a state to display a counter that increments
by 1 every time a button is clicked.

5. Develop a Node.js script that recursively reads all files in a directory and its

subdirectories and logs their names to the console.

34

Remedial Question Paper

B.Tech -1II (6" Semester) CA-1 (MIDTERM) EXAMINATION March 2024
Subject: Advanced Web Technology

Time: 04:00 PM TO 05.15 PM Subject Code: BTIT13604
Total Marks: 25 Date: 08/04 /2024

Q:1

Discuss the different types of React Hooks and their use cases.

Q:2

Attempt Any Four.

6. What is Chaining in Promise? Provide an Example.

7. Compare and Contrast Class Components and functional components in React.
8. Explain the concept of virtual DOM in React and its advantages.

9. Explain the significance of events and the event loop in Node.js applications.

10. Discuss the difference between props and state in React Components.

12

Q:3

Attempt Any Three.

6. Write a React component that fetches data from an API using the useEffect hook
and displays it in a list.

7. Create a React form component that captures user input for a username and
password, and updates state accordingly.

8. Implement a Node.js script to read the contents of a text file and display them in
the console.

9. Create a basic REST API using Node.js that responds with "Hello, API!" when
accessed via an HTTP GET request.

10. Write a Node.js script that uses setTimeout to print "Delayed Message" after 2
seconds.

EE R S S R R S S S R R S S R R S S S R R R S S S S R R S S R L R S S S R S S S S R R L S S R R R S S S S R S S R R L S S S R L S

35

Continuous Assessment Record

Printed Mark sheet (in the given format)

36

Result Analysis

Number of Students | Mid-I (21/03/24)
Total 75
Not allowed 00
Absent 01
Fail 00
Pass 74
Pass (%) 100 %
AA 49
AB 13
BB 05
BC 05
CC 03
CD 00
FF 00

Note: AA (>=85%), AB (>=75% < 85%),BB (>=65% < 75%), BC (>=55% < 65%), CC

(>=45% < 55), CD (>=40% < 45%), FF (<45%)

37

Counselling Report

Date

Enrollment No.

Name Of Students

Details

38

Attendance Record

Musters

39

Answer Books

40

Students Practical Files/Tutorials/Assignments/Other Records

Note:

1) Max 5 best records for student Files/Tutorial/Assignments
2) Other records — Term end practical exam supplementary / Quiz Hard copy or any other
records (all the records need to be submitted)

41

